Abstract of 25™ Annual Software Engineering Workshop Paper: “Enhanced Mission
Success with Software Development Principles: Application to Mars’98 Missions”

Milton Lavin, Jet Propulsion Laboratory, Pasadena, CA 91109 8/21/00
Background

The objective of this paper is to illustrate the use of experience-based development principles in
order to identify and eliminate software defects prior to launch. The application context is
selected from software problems contributing to two recent NASA mission losses -- the Mars
Climate Orbiter (MCO) Mission in October 1999 and the Mars Polar Lander (MPL) Mission in
December 1999. In the case, of MCO, the failure to achieve Martian orbit was traced to a units
error in the small forces software used in navigation. The presumed cause of the MPL loss
during descent is a defect in the software controlling the touchdown sensor. In each case, the
application is presented with the intent of demonstrating the synergy and effectiveness of
employing a comprehensive set of software development practices to root out defects. Because
the MCO and MPL Loss Reports were inputs to the software development principles, these two
applications cannot be construed as a validation of the methodology.

Effective software development is dependent both on a mature development process (standards,
procedures and policies) and on the continual incorporation into the process of lessons learned
from historical projects. These “lessons learned” are typically more detailed than general
principles of software engineering because they are idiosyncratic to each development context --
in JPL’s case, robotic missions into deep space. It is particularly important to document
experience and incorporate it into the development process when many project managers have
limited experience in software development. Tighter development schedules and reduced
budgets are another factor that stimulates the search for more effective ways to build quality into
the product while satisfying programmatic demands. Thus for several reasons, it was decided to
make these lessons learned more accessible to the JPL development community by 1) analyzing
key factors in recent mission successes and failures and 2) distilling the findings into concise
principles to be observed in planning and implementing a software development.

Development of Software Development Principles for Flight Systems

In conjunction with a broader initiative to document good system development practice, The
Center for Space Mission Information and Software Systems at the Jet Propulsion Laboratory
(JPL) has developed a set of 103 software development principles for flight systems, organized
around life cycle activities. Both in-house development and software acquisition are addressed.
A development principle is understood to be a best practice to which exception can be taken for
good reason -- but only for good reason. Adherence is verified by 1) documenting deviations in
the software management plan and 2) using these principles to probe development process
details during reviews of plans, requirements, designs, and test results. These principles are
based on experience in recent flight projects -- both successes and failures. Primary sources
were discussions with software managers, system engineers, and developers spanning all major
software-intensive mission systems, plus the findings and lessons learned in the six cited sources

-- three investigations of the two recent Mars Mission losses, two reports that draw more broadly
on flight software development at JPL and GSFC, and NASA’s Lessons Learned website.

The process of developing these software principles was iterative, with each version subject to
extensive peer review by developers, subject matter experts, line managers, and project
managers. In the early phase of development, the selection of principles was guided by an
editorial board, armed with evaluation criteria. After the first workshop review, the principles
were baselined, and further changes were approved by a change board. It is expected that
projects in the planning and early implementation phases will be the initial users of these
software principles -- Mars Rover’03, and Outer Planets/Solar Probe are two examples.

Application of Software Development Principles to Mars’98 Missions

In the case of both the MCO units error and the software logic controlling the MPL touchdown
sensor, the defect was introduced in the flowdown of systems requirements to software
requirements. Exhibit 1 summarizes the multiple opportunities to identify and correct each
defect via the application of cited software principles -- beginning with planning for peer reviews
and ending with pre-delivery and acceptance testing. An “X” in Exhibit 1 denotes that the
indicated activity was either missing or ineffectively implemented.

Exhibit 1: Application of Software Development Principles to Mars Climate
Orbiter and Mars Polar Lander Software Defects

Software Development Principle MCO | MPL

3.2 Planning and Monitoring

3.2.7 Joint development planning for interfacing HW & SW

3.2.9 Identification of milestone and peer reviews

3.2.10 Participation of HW engineers and operations in reviews

3.2.12 Peer review of intermediate products

3.4 Risk Management

3.4.3 Early validation of interfaces, high-risk algorithms, COTS

3.6 Design and Implementation

o] I e N et

3.6.3 Design traced to software & mission requirements

3.6.4 Analytical basis for logic design

>

3.6.6 SW logic to verify values of input & output parameters

3.7 Integration and Test

3.7.6 Detailed testing of mission phase transitions

3.7.7 Testing to address FTA and off-nominal HW behavior

|

3.7.9 Aggressively find latent defects via stress testing

e ot o e B et el [B el B B e e B

| <

3.7.13 Trace from final system test to mission requirements

3.9 Software Acquisition

3.9.1 PIP to address management of software acquisition:
e In-process JPL review of intermediate products X
e JPL participation in pre-delivery testing

<X

3.10 Product and Process Verification

3.10.4 Acceptance test exercising mission-critical systems X X

4.0 Flight Software

4.5 Accommodation of nominal, off-nominal/transient inputs X

Because software creation is complex and subject to a variety of human error in specification,
design, and implementation, it is not surprising that serious defects were introduced into the
MCO and MPL software during development. The activities suitable for defect identification
and removal are well known, but they must be applied systematically as an ensemble because in
practice each is only partially effective.

References:

J. Casani et al., Report on the Loss of the Mars Climate Orbiter Mission, JPL D-18441
(November 1999)

J. Casani, et 2i., Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions, JPL
D-18709 (March 2000)

J. Hihn and H. Habib-agahi, Flight Software Cost Growth: Causes and Recommendations, JPL
D-18660 (February 2000)

C. Lin and H. Kea, GSFC/JPL Quality Mission Software Workshop Report (October 1999)
NASA Lessons Learned Information System site -- http://llis.nasa.gov/
J. Vellinga, Mars Polar Lander (MPL) Possible Premature Engine Thrust Termination Process

Investigation Report, Lockheed Martin Space Systems, Denver Operations, MSP-00-5001
(March 2000)

